Prioritizing Climate Change Mitigation Technologies by Cost-Effectiveness:

How do transportation options compare with other sectors?

Nic Lutsey

Ph.D. Candidate

Institute of Transportation Studies University of California at Davis

California Air Resources Board Chair's Air Pollution Seminar Series April 30, 2008

Outline

- Background: U.S. climate mitigation
- Prioritizing GHG mitigation options
 - Climate change mitigation criteria
 - Cost-effectiveness "supply curves"
- Findings
 - Transportation sector
 - All economic sectors

Background: Mitigation Policy

- Emission reduction targets
 - e.g. to 1990 GHG level by 2020, 80% below 1990 GHG level by 2050
 - 17 states and 700+ cities (represent 53% of the U.S. population)
- Emission mitigation planning
 - State GHG inventories 42 states (93% of U.S. GHG)
 - State "Climate Action Plans" 30 states (53% of U.S. GHG)
 - Sector-specific actions (examples)
 - Renewable electricity portfolio targets (~half of U.S. elec. generation)
 - Vehicle GHG regulations (~half of U.S. auto sales)
- Coordination regional cooperation to establish emissions trading, common mitigation programs
 - Northeastern states (RGGI, NEG/ECP pact)
 - Western states (WCG GWI, WCI)
 - Climate Registry coordination on consistent GHG reporting guidelines
 - Cities U.S. Mayor's Climate Protection Agreement

Background: Mitigation Areas

- Sector-specific GHG mitigation action areas:
 - Transportation:
 - Vehicle GHG regulation
 - Fuel standards, mandates, targets
 - VMT reduction measures
 - Electricity generation
 - Renewable electricity targets, standards
 - Energy efficiency resource standards
 - Fossil fuel efficiency (e.g. coal IGCC)
 - Carbon capture and storage (CCS) technology
 - Residential and commercial buildings
 - Appliance, lighting efficiency
 - Heating, cooling efficiency
 - Building codes
 - Distributed power generation
 - Industry (cement, paper/pulp, chemical, refrigerant, landfill)
 - Agriculture (forestry, soil carbon sequestration, N2O/CH4)

Background: Mitigation Criteria

- What criteria are most important in prioritizing mitigation actions?
- From state mitigation plans:
 - Individual action effects
 - 1.) GHG emission reduction potential
 - 2.) Implementation cost
 - 3.) Variable (lifetime) costs, benefits
 - 4.) Ancillary costs, benefits
 - Cumulative actions' effects
 - 5.) GHG emission reduction potential
 - 6.) Costs, benefits
 - 7.) Multi-sector equity (e.g. vehicles vs. electricity)

Evaluating GHG Mitigation Options

Cost-effectiveness "supply curve" approach:

- Collect data for baseline and mitigation technology alternatives
- Bundle cost, benefit, and emissions impact data in one variable
 - "Cost-effectiveness"
 - Cost-per-ton CO₂-equivalent reduced
- Rank options by cost-effectiveness
- Show cumulative impact at increasing cost
- Highlights:
 - Actions under given \$/ton cost
 - "No regrets" actions (net benefits > costs)
 - Total emission reduction goals (e.g., 1990 level by 2020)

Cost-Effectiveness Curve Approach

Use in various forms

- Initial costs only:
- Include costs and direct benefits:

$$\begin{pmatrix}
Cost - Effectiveness \\
(\$/tonne)
\end{pmatrix} = \frac{\begin{pmatrix}
Initial Technology \\
Cost
\end{pmatrix}}{\begin{pmatrix}
Greenhouse Emission \\
Reduction
\end{pmatrix}}$$

$$\binom{Cost - Effectiveness}{(\$/tonne)} = \frac{\binom{Initial\ Technology}{Cost} + \binom{Lifetime\ Fuel}{Cost\ Impact}}{\binom{Greenhouse\ Emission}{Reduction}}$$

Cost-Effectiveness Curve Approach

Methodological Steps

- Literature search and screening -
 - Assess/screen technologies
 - Available data (GHG, cost, benefit)
 - Technology-based
 - Timeframe: GHG technologies to be deployed from 2010-2025

Cost-effectiveness curve development

- Estimation and accumulation of cost, GHGreduction data
- Assume US EIA fuel prices (at 7% discount rate)
- Develop sector-specific curves
- Combine in multi-sector curve

Multi-Sector Assessment -

 Synthesis various economic sectors' GHG mitigation strategies and their contribution to overall US GHG emissions reductions

Technology Areas

- Sector-specific areas to analyze for GHG reductions
 - Transportation
 - Light duty vehicle efficiency (rated incremental, "on-road", HEV)
 - Commercial truck efficiency
 - Biofuels (ethanol, biodiesel)
 - Aircraft
 - Residential and commercial buildings
 - Appliances
 - Lighting
 - Heating, ventilation, and air-conditioning (HVAC)
 - Distributed power
 - Electric power sector
 - Fossil-fuel switching (coal to natural gas)
 - Carbon capture and sequestration (CCS)
 - Renewable (wind, solar, biomass)
 - Nuclear
 - Industry (cement, paper/pulp, chemical, refrigerant, landfill)
 - Agriculture (forestry, soil carbon sequestration, N2O/CH4)

Vehicle Technology Options

Incremental vehicle efficiency

- Engine (gasoline direct injection, variable displacement)
- Transmission (5 and 6-speed auto, continuously variable)
- Body, road load reduction (light-weighting, aerodynamics)

"On-road" fuel efficiency improvements

- Tire inflation, rolling resistance
- Maintenance, low-friction oil
- Efficient accessories, alternator

Advanced drivetrain technology

- Electrified drivetrain (HEV, PHEV, EV)
- Fuel cell electric (hydrogen or other fuel)

Reducing other non-CO₂ GHGs:

- Air conditioning (HFC-134a)
- Nitrous oxide (N₂O), Methane (CH₄)

Incremental efficiency technology for light-duty vehicles:

Assumptions: vehicle life of 189k, 17 years; ~\$2.35/gallon gasoline (U.S. EIA, 2007); 7% discount factor for future fuel savings. Sources: Austin, et al, 1999 (Sierra); DeCicco et al, 2001 (ACEEE); EEA, 1995; NRC 2002; Plotkin et al, 2002; Weiss, M.A., et al., 2000 (MIT)

"On-road" efficiency technology for light-duty vehicles:

Assumptions: vehicle life of 189k, 17 years; ~\$2.35/gallon gasoline (U.S. EIA, 2007); 7% discount factor for future fuel savings. Based on IEA and ECMT, 2006

Hybrid electric vehicle technology for light-duty vehicles:

Assumptions: vehicle life of 189k, 17 years; ~\$2.35/gallon gasoline (U.S. EIA, 2008); 7% discount factor for future fuel savings; 0.8 on-road fuel economy degradation factor; U.S. electricity mix

Sources: Graham et al 2001 (EPRI); Plotkin et al 2001 (ANL); Lipman and Delucchi, 2003; Weiss et al 2001 (MIT); An et al 2001; Markel et al (NREL), 2006

Light-duty vehicles GHG cost-effectiveness curve:

Light duty vehicle GHG-reductions through 2030:

Commercial truck (Class 2b, Class 3-6, Class 8) GHG-reduction:

Based on An et al 2000; Langer, 2004; Vyas et al 2002; Schaefer and Jacoby, 2006; Muster, 2001; Lovins et al, 2004

Building Sector

Technology areas in residential and commercial buildings:

Appliance efficiency (18 technologies)

Building shell efficiency (13 technologies)

HVAC efficiency (10 technologies)

Lighting efficiency (10 technologies)

Distributed power (2 technologies)

April 30, 2008

Electricity Generation

Electricity generation GHG-reductions:

Industry Sector

GHG abatement in other industrial sectors:

Technology Areas:

High-GWP "F gases"

Steel and iron

Cement

Combined heat and power (CHP)

Landfill gas management

Paper and pulp

Agricultural Sector

GHG abatement in agriculture and forestry:

Areas included:

Afforestation

Forest management

Soil carbon sequestration

Biofuel offsets (biomass for transp. Fuels, power plants)

Reduced fossil fuel inputs

Livestock manure management (enteric ferm. and manure CH_4)

N₂O-related soil management strategies

- Issues in integrating GHG abatement measures
 - Interaction effects, or "double counting"
 - Cross-sector linkages
 - Building sector efficiency electricity generation technologies
 - Agriculture sector biomass production transportation/electricity biomass usage
- Handling of data
 - Choose mutually exclusive GHG-reduction measures
 - Adjust baseline emissions characteristics for measures that interact (and recalculate GHG emission reductions and cost effectiveness ratios)
 - Selection of studies and technologies to be consistent across sectors

Synthesis of all sectors' GHG cost-effectiveness curves:

Technologies included:

Automobile efficiency

Truck efficiency

Biofuels

Aircraft efficiency

Renewable electricity

Carbon capture and storage

Nuclear power

"Clean coal" IGCC

Appliance

Building shell

HVAC efficiency

Distributed power

Livestock management

Landfill gas-to-energy

Hydrofluorocarbon

Impact of energy savings in GHG cost-effectiveness curves (Why aren't "no regrets" technologies more widely adopted?):

"Efficiency gap" factors:

Slow diffusion of technologies

Information availability

Consumers do not value or consider future energy savings

Principal-agent problem (purchaser \neq energy-saver)

Other technology costs/limitations that are not included

Institutional barriers

What is the impact of the lower cost mitigation measures? Synthesis of all sectors' technologies <\$50/tonne CO_2e :

43% below 2030 baseline

16% below 1990 level in 2030

Synthesis of all sectors' GHG cost-effectiveness curves (selected transportation measures highlighted):

Transportation GHG Abatement

Transportation GHG-reduction through 2050:

Conclusions

Transportation

- Energy savings makes vehicle efficiency options very attractive
- Many available technologies are cost-effective contributors to overall GHG mitigation targets through 2030
- Near-zero GHG emission vehicles and/or substantial VMT reductions required for deeper 2050 GHG reductions

All economic sectors

- On achieving the target of 1990 GHG emission level in 2020-2030 time period (40% reduction from baseline) . . .
 - Feasible with known technologies
 - Feasible with measures at cost < \$50-per-tonne CO₂e
 - Many technologies in many economic sectors will be required
 - Many "no regrets" actions with net economic benefits to operators of efficiency technologies (e.g. appliance, lighting, buildings, and vehicles)

Conclusions

Acknowledgements

- Dissertation fellowship from ITS-Davis' Sustainable Transportation
 Center (STC), with funding from Caltrans and U.S. DOT
- Dissertation committee members: Dan Sperling, Joan Ogden, and Tim Lipman
- Contact
 - <u>nplutsey@ucdavis.edu</u>
- Questions?

Comparison with Other Studies

 As compared to McKinsey study, Reducing U.S. Greenhouse Gas Emissions: How Much at What Cost (Creyts et al, 2007)

Other Benefits of GHG Mitigation Actions

With inclusion of generic \$25/tonne CO₂e co-benefit:

