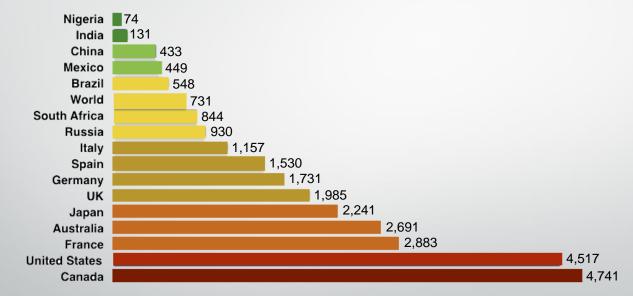
Resilient Energy Systems

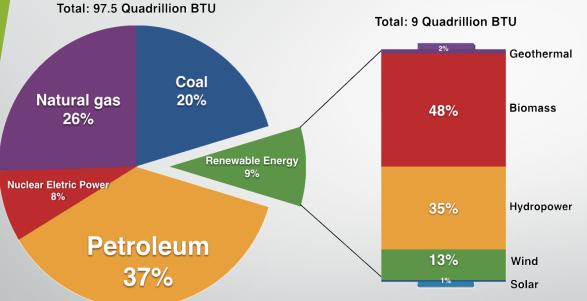
Cameron Bernhardt, Amy Syvrud, Byron To, Alyssa Zamora

Outline


- Energy Systems Today
- Science & Economics
- Current Risks
- Resilient Solutions

DING RESILIEN

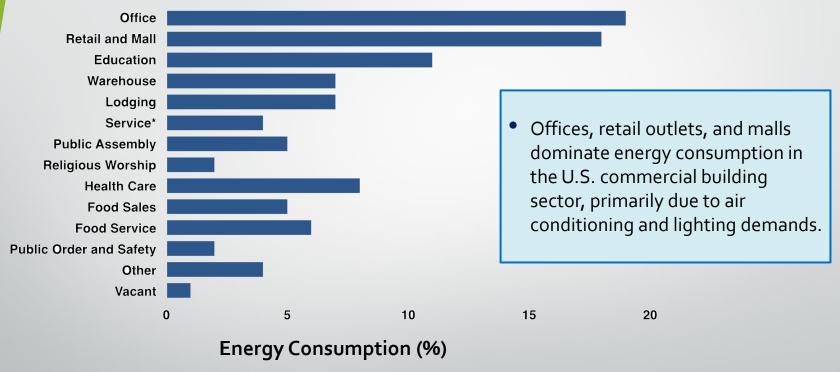
50 MW Kumeyaay Wind Project on Campo Reservation


Residential Electricity Use per capita (kWh/year)

Source: Enerdata via World Energy Council, 2010

Network Institute

National Energy Consumption

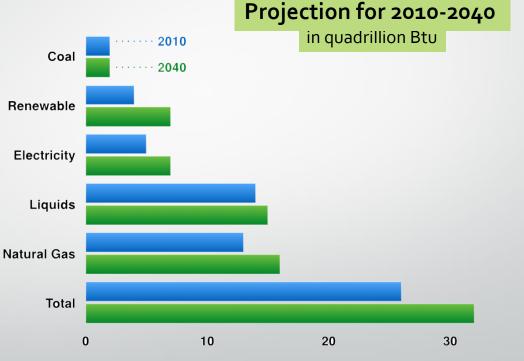

For renewables, the U.S. consumes mostly
 hydropower and biomass.

- Power from solar, wind, and geothermal make up only 20% of the country's renewable energy.
- Only 1% of renewable energy comes from solar, despite strong accessibility to sunlight across the nation.

Source: U.S. Energy Information Administration

UILDING RESILIENT

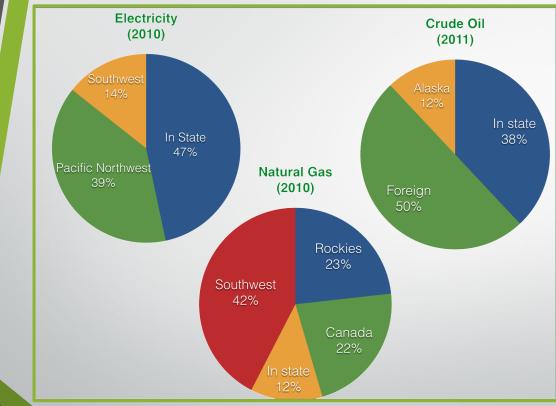
U.S. Commercial Energy Consumption



DING RESILIEN

Source: U.S. Department of Energy

U.S. Industrial Energy Use


- The average annual growth in U.S. industrial energy consumption from 2010 to 2040 is projected to be 0.6%.
- The rate of growth for industrial consumption of renewables in the U.S. is greater than any other energy source.

Source: U.S. Energy Information Administration

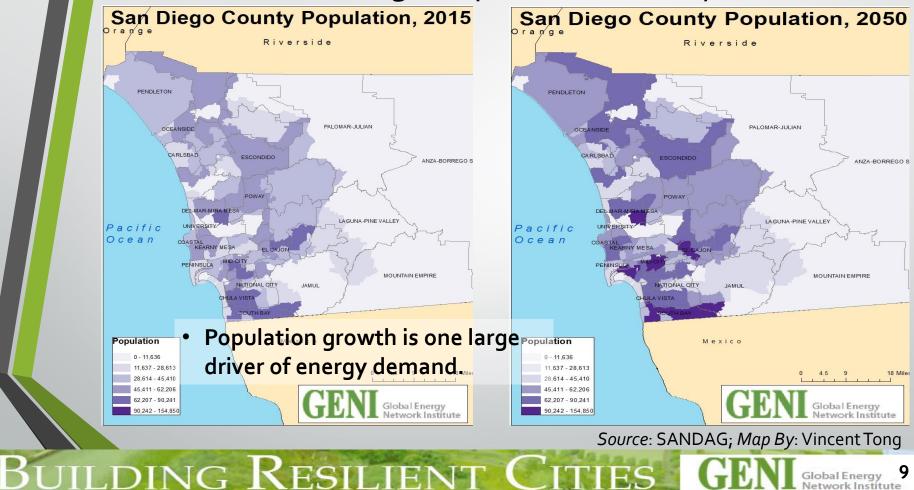
40

California's Energy Sources

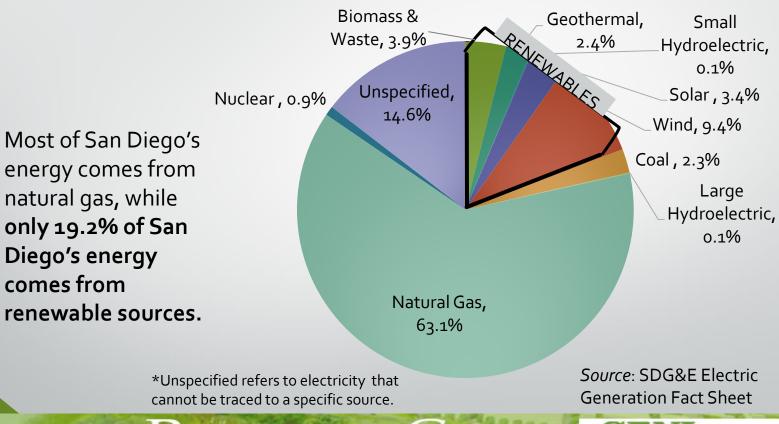
Most of California's electricity comes locally from the state, while natural gas is imported from the Southwest and crude oil from foreign countries.

letwork Institute

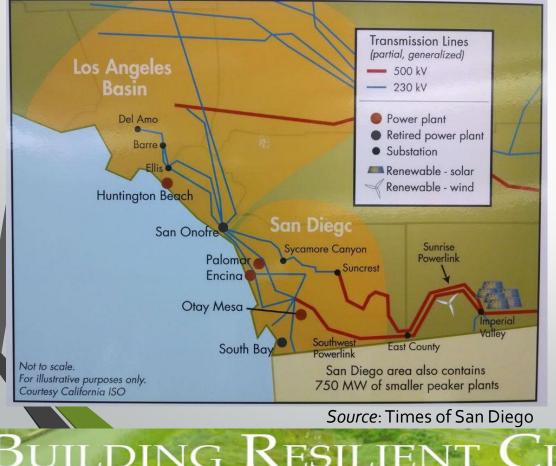
Source: California Energy Almanac


Background of San Diego

- San Diego is California's second largest city and the eighth largest in the nation.
- Between 1990 and 2004, San Diego's population increased by 16% to about 1.3 million people.
- During this same timeframe, residential energy use increased roughly 45%, commercial use increased nearly 108%, while industrial use increased only 2%.


Source: City of San Diego

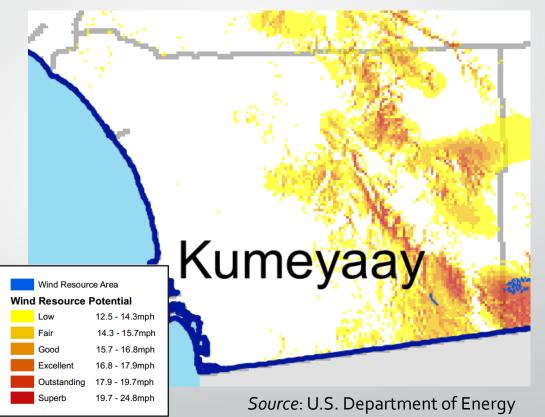
San Diego Population Density



Global Energy Network Institute

SDG&E 2012 Energy Mix

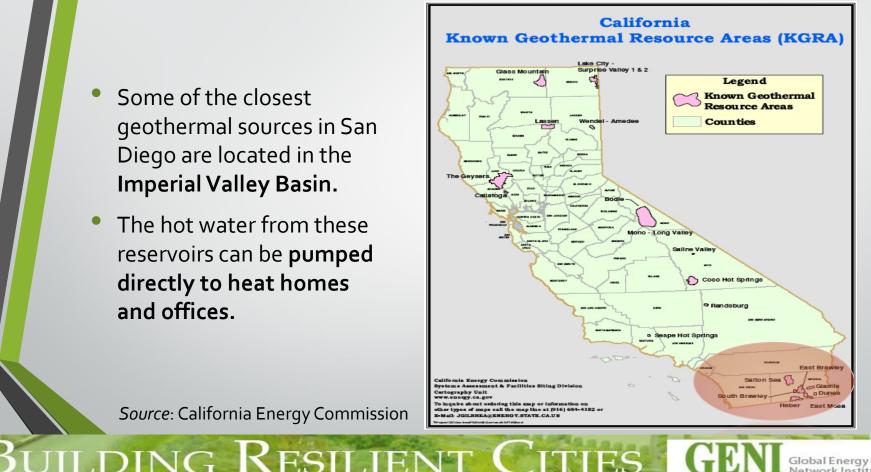
San Diego Transmission Lines Map



- Half of San Diego's power comes locally, while half is imported into the county.
- The peak energy demand in San Diego is 4500 MW; while the base load demand is 2000 MW.
- Small peak plants and large base load plants satisfy these demands.

Source: GENI

San Diego Wind Resource Potential


- The Kumeyaay Wind Farm supplies power to over 30,000 homes.
- San Diego County's wind power potential is about 6,900 MW, of which 1,530 MW can be used to power about 380,000 homes.
 Source: California Energy Commission, 2005 Report

BUILDING RESILIENT CITIES GENI GIODA EN GIOD

San Diego Geothermal Sources

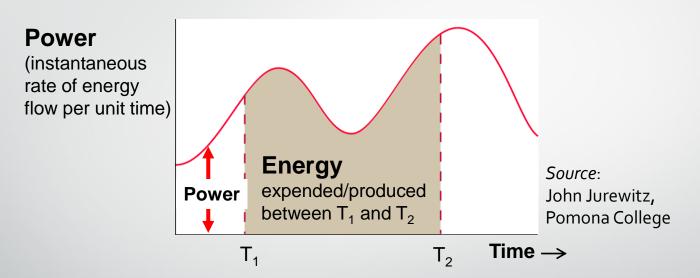
- Some of the closest geothermal sources in San Diego are located in the **Imperial Valley Basin.**
- The hot water from these reservoirs can be **pumped** directly to heat homes and offices.

Source: California Energy Commission

San Diego Biomass Energy Potential

Source Category	Capacity and Energy Potential		
Urban Wood Wastes	40-100 MW, or 300-800 GWh, per year	 Most of San Diego's biomass energy comes from urban wood wastes. 	
Agricultural Wastes	Negligible, more economically valuable use as fertilizers	nom orban wood wastes.	
Forestry Wood Wastes*	3-8 MW, or 20-57 GWh	 Urban wood waste is used to fuel bioenergy plants, which can then be used to produce electricity for homes and offices. 	
Landfill Gas	72 MW, or 505 GWh		

* The sustainability of forestry wood wastes is highly uncertain and difficult to predict in the long run.


LDING RESILIENT

Source: San Diego Regional Renewable Energy Group

Science & Economics

A glance at energy production and electrical grid operation

Power and Energy

Watts measure instantaneous rates of power

Watt-hours measure volumes of energy

Electricity Generation

- Nearly all processes that generate electricity involve these four steps:
 - **1.** An energy source is burned to heat water, turning it into steam...
 - **2.** The steam spins a turbine at high pressure...

NG RESILI

- **3.** The spinning turbine turns large magnets within copper wire coils...
- **4.** The moving magnets displace electrons, creating an electrical current.

Source: Origin Energy

California's Electric Transmission Lines

- SDG&E is the 3rd largest electrical utility in the state of California.
- San Diego's population is growing rapidly and will force SDG&E to expand in the near future.

Source: U.S. Census Bureau

Building Resilient

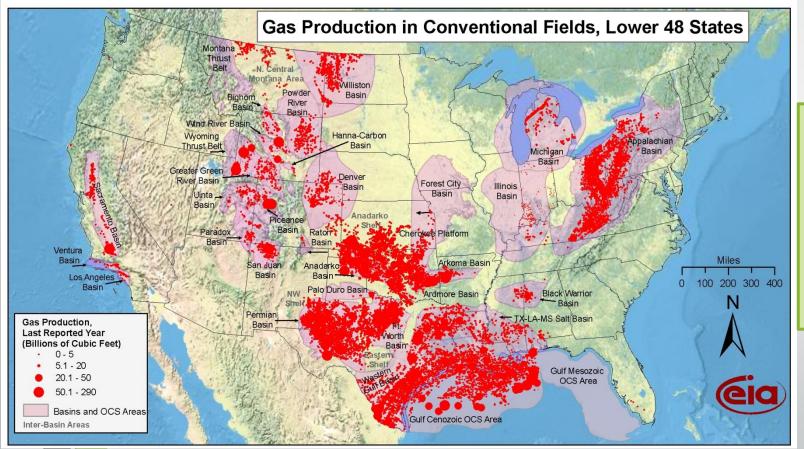
Source: California Energy Commission, 2012

Vetwork Institute

San Diego Gas & Electric

- Provides natural gas and electricity to San Diego County and south Orange County
 - 3.4 million consumers; 4100 employees
- Utility parented by Sempra Energy
 - 31 million customers worldwide

Controls SDG&E's management and operations Sempra Energy

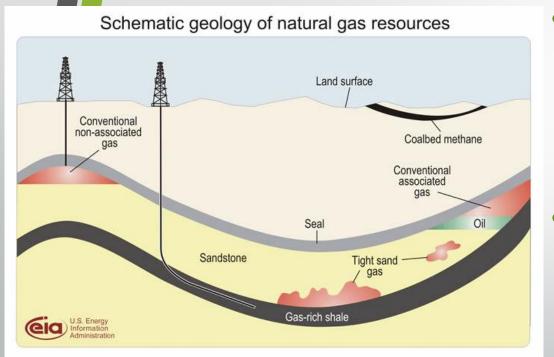

Natural Gas An Insufficient Alternative

The "Best" Fossil Fuel

- 63.1% of SDG&E's 2012 Power Mix
- More sustainable than oil and coal, but not the answer to energy dilemma
 - 29% less CO2 than oil; 44% less than coal
 - "...not a bridge to a renewable energy future - it's a gangplank to more warming and away from clean energy investments." – Anthony Ingraffea, Cornell University

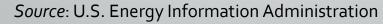
Natural Gas Problems

- Although CO₂ emissions are roughly four times greater than CH₄ emissions, CH₄ climate impacts are 20x greater over 100-year period. – E.P.A., I.P.C.C.
- Unless CH4 leaks can be kept under 2%, gas is inferior to coal with regard to climate. N.C.A.R., 2011
- Harmful extraction, volatile prices



California is the #2 natural gas consumer in the U.S., but **88%** of the gas it consumes is **produced out-of-state.** - E.I.A., SDG&E

Global Energy


Source: U.S. Energy Information Administration, 2009

Natural Gas Extraction

ING RESIL

- Extracted by drilling vertically into Earth
 - Hydraulic fracturing ("fracking"), horizontal drilling, acidizing
 - Controversial and debated environmental impacts
- Conventional natural gas sources are expanding
 - **Developing technology** makes unconventional extraction more economically viable

Hydraulic Fracturing

• Hydraulic Fracturing – Shale Natural Gas Extraction

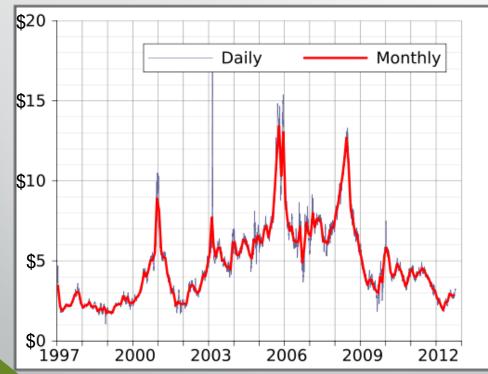
- A video by SMT Learning briefly describing the hydraulic fracturing and horizontal drilling extraction processes.
- http://www.youtube.com/watch?v=IB3FOJjpy7s

Negative Consequences of Hydraulic Fracturing

Groundwater Contamination Surface Water Contamination Induced Seismic Activity **Higher Water Prices** Release of Radioactive Materials Expensive Wastewater Treatment

Natural Gas Fracturing Fluid

- While these chemicals are harmless in common household items, they are not as welcomed in our groundwater supplies.
 - The EPA has proven that groundwater supplies have been contaminated by fracking fluid, as well as escaped methane.
- Hydraulic fracturing's heavy reliance on water for production makes natural gas a vulnerable energy source for the San Diego region.


ING RESIL

Source: EnergyFromShale

Natural Gas Prices

(\$/MMBtu)

- Factors affecting prices:
 - Variation in shortages, production, imports, delivery constraints, operating accidents
 - Seasonal fluctuations in temperature raise demand
- Prices closely linked to oil, renewables, and other energy sources

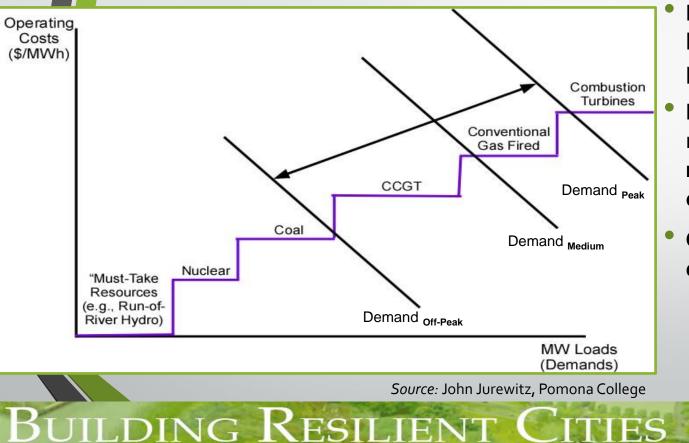
Source: Henry Hub, E.I.A.

Predominant Generation Technologies Economics

	Capital Costs	Operating Costs	Start-Up Times	Dispatchability
Large Hydro	High	Very Low	Instantaneous	High
Nuclear	Very High	Very Low	Very Slow	"Sluggish"
Coal	High	Low	Slow	"Sluggish"
Conventional Gas-Fired	Medium	Medium	Medium	High, but Ramping and Turndown Limits
Simple-Cycle Gas Turbines (Peaking)	Low	High	Fast	High
Combined-Cycle Gas Turbines	Medium	Medium-Low	Medium	High, but Ramping and Turndown Limits

uilding Resilient

Source: John Jurewitz, Pomona College


26

Renewable Generation Technologies Economics

	Capital Costs	Operating Costs	Start-Up Times	Dispatchability
Small Hydro	High	Very Low	Instantaneous	Intermittent; Non-Dispatchable
Wind	Medium	Medium	Instantaneous (adequate wind)	Intermittent; Non-Dispatchable
Solar Photovoltaic	Very High	Very Low	Instantaneous (adequate sunlight)	Diurnally "Predictable"; Non-Dispatchable
Solar Thermal	High	Medium	Takes Time From Cold State	Dispatchable (when hot)
Geothermal	High	Medium	Hours	Dispatchable
Biomass	Medium	Medium	Hours	Dispatchable

Source: John Jurewitz, Pomona College

Simple Operating "Merit Order"

- Base load plants have low operating costs and poor dispatchability.
- For cost-effectiveness, run generation with relatively low operating costs.
- Complicated execution:
 - Start-up times
 - Minimum turndowns
 - "Must-take" reliability

Barriers Of Entry For Renewables

- Lack of price incentives for expensive capital investments.
 - Our systems need to be energy efficient for them to be cost-efficient.
 - Many developing countries lack the governmental, institutional, and structural support required for costly renewable investments.
 - Engineers, city planners, and workers are not trained or educated to deal with renewable technologies.

DING RESILIENT

UN Secretary-General Ban Ki-moon at the solar test facility in Denver, Colorado.

A Renewable Future

"By 2020, we should be headed in a downward direction for oil output in the world each year instead of an upward direction, as we are today." - Charles "Dean of Oil Analysts" Maxwell

NIC

 The costs of renewable technologies are decreasing over time. The prices of natural gas, coal, and oil will increase as we pass "peak oil."

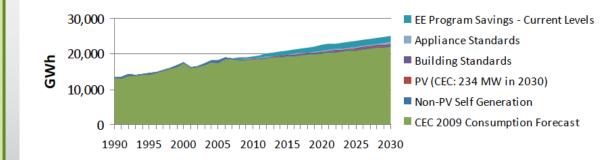
 Upfront capital investments can finance further development of renewables and allow for their rapid integration when they become more energy-efficient.

Source: Energy Trends Insider

Risks of Our Energy Systems

A growing population, reliance on natural gas, and climate-driven change

Year	Gigawatt Hours	Population Size
2007	18,648	3.12 million
2020	20,555	3.33 million
2030	22,647	3.53 million


Source: San Diego County Fact Sheet

 Region's total electricity consumption from 2007 is expected to increase by 20% by 2030 because of our growing population.

ING RESU

How will population growth impact our consumption levels?

San Diego County Business as Usual Electricity Forecast 2010-2030

Source: California Center for Sustainable Energy, 2009.

Source: SANDAG

How much is our energy consumption contributing to climate change?

Table 1: San Diego County GHG Emissions Overview	
Intergovernmental Panel on Climate Change Category	Percentage of Total
Energy	91%
Industrial (non-fuel)	5%
Waste	2%
Agriculture, Forestry, Land Use	2%
Source: Energy Policy Initiatives Center, University of San Diego, 2008.	
	Source SANDAC

Source: SANDAG

- **91%** of our GHG emissions are **energy** related.
 - 46% are due to transportation.
 - 33% are due to electricity and natural gas end-uses only.

What are the risks of relying so heavily on natural gas?

- Natural gas prices have been volatile and will likely climb in the future.
- California imports almost **90%** of its natural gas via interstate pipelines. California, and especially San Diego, which lie at the end of the pipelines, are vulnerable to supply disruptions due to:
 - Political situations
 - Natural disasters
 - Methane in natural gas has costly environmental repercussions if it escapes into the atmosphere.

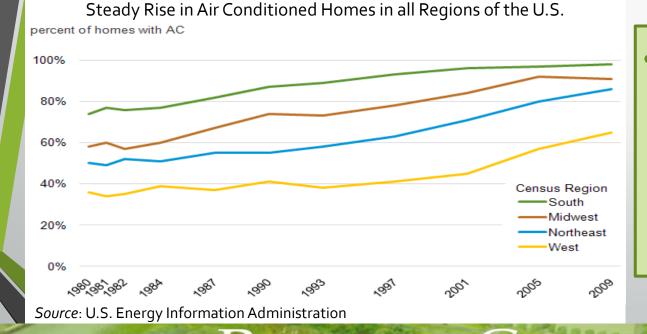
Source: CA Gov. Energy Alamanac

DING RESILIEN

Source: U.S. Energy Information Administration

Climate Change Risks for San Diego

- Extreme temperatures
- Sea-level rise
- Mass movement (erosion)
- Flooding
- Drought
- Wildfires


Climate-driven changes are projected to account for approximately 7% of the total increase in peak energy demand.

-San Diego Bay Adaptation Strategy

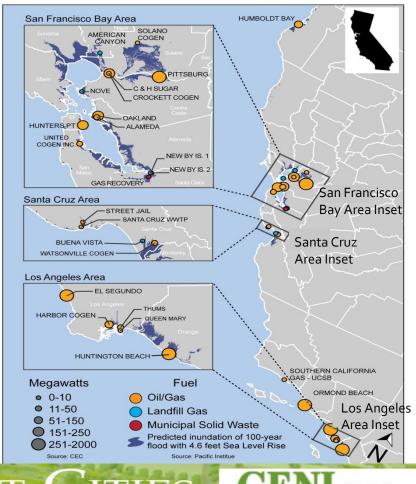
Increasing Temperatures

"On any hot summer afternoon, about one-third of the electricity that's being consumed is being used to drive air conditioners." -Claudia Chandler, California

Energy Commission

ING

Annual energy consumption is expected to increase more than **60%**, mostly due to increased demand for summer cooling.


Sea Level Rise

- Given a 1.4m (4.6ft) rise scenario, 25 power plants along the California coast could be flooded but none in San Diego are at risk within this century.
- Erosion and flooding from sea level rise could pose a threat to above-ground electricity transmission and distribution, causing outages or safety issues.

UILDING RESILIE


Source: National Climate Assessment

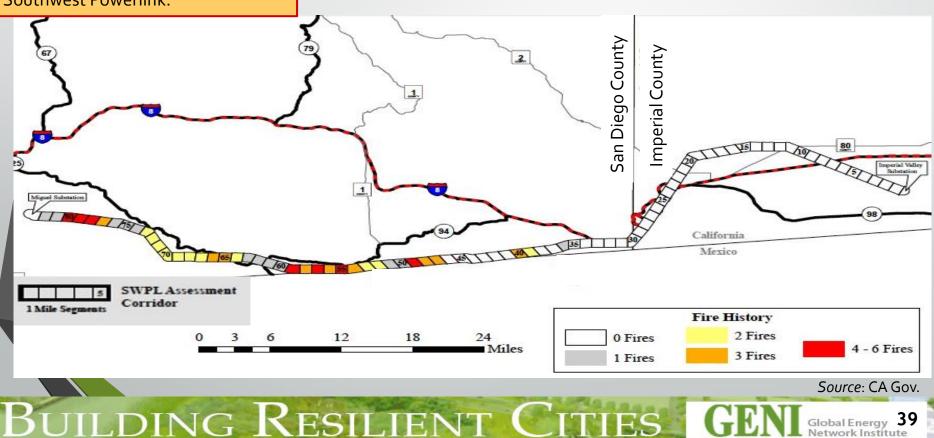
California Power Plants Potentially at Risk from Sea Level Rise

Drought: Water-Energy Nexus

• Water-related electricity use is 48 terawatt-hours (TWh) per year and accounts for **nearly 20%** of California's total electricity consumption.

Agricultural End-Use: 3%

- Agricultural Water Supply and 1% Treatment:
- Residential, Commercial and Industrial 11% Water End-Use:
- Residential, Commercial and Industrial 3% Water Supply and Treatment :
- Wastewater Treatment: 1%


 Drought will place
 higher constraints on power production at existing facilities and permitting of new power plants.

Source: CA Gov. Refining Estimates of Water-Related Energy Use in California

ING RESILIEN

Transmission lines passing through San Diego are at **risk for outages** as a result of wildfires—especially the Southwest Powerlink.

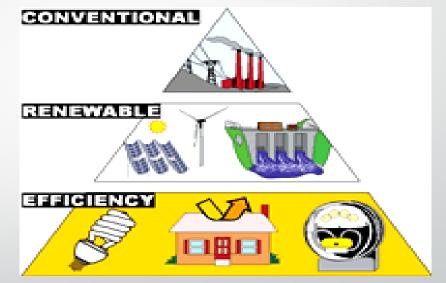
Wildfire Is A Serious Threat

Meeting Our GHG Reduction Targets

Per Capita Residential Energy Consumption Per Day by County, 2011

 SANDAG has recommended a 20% reduction in per capita electricity usage by 2030 to keep total regional electricity consumption flat and meet mandated targets (AB32 and SB375) as our population and economy grow.

UILDING RESILIEN


Source: Equinox Center 2012; California Energy Commission 2012; CA Dept. of Finance 2012

Meeting Our Energy Demands and GHG Targets

- The state's **"preferred loading order"** to meet increasing demand for electricity:
- Decrease demand by increasing energy efficiency and conservation
- 2. Meet new generation needs first with renewable resources

DING RESILIENT

3. Meet rest of needs with fossil fuels

Source: SANDAG, July 2009

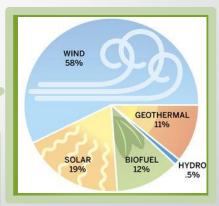
Resilient Solutions

Building a resilient energy system in San Diego

BUILDING RESILIENT CITIES GE

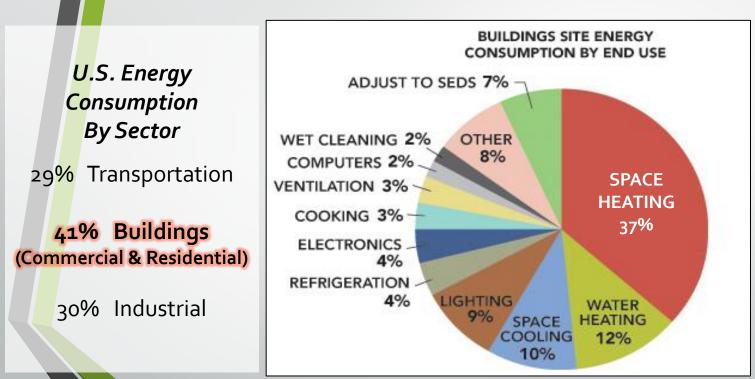
Building a RESILIENT ENERGY SYSTEM

Improved Energy Efficiency


Harnessing Renewable Energy

Integrating New Technology

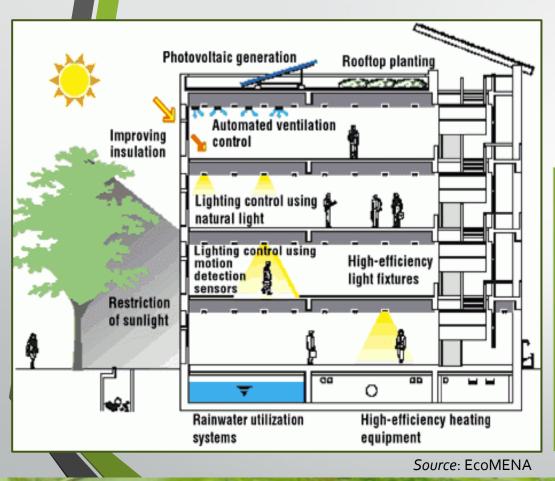
- Cogeneration
- Distributed Energy


FED CERTIFIE

BUILDING RESILIENT CITIES GENI

Improving Energy Efficiency

Generating more energy at lower costs



DING

Improving energy efficiency costs significantly less than investing in new generation and transmission.

Increased temperatures in San Diego can heighten energy consumption by buildings especially for space cooling.

Source: Buildings Energy Data Book, US Dept. of Energy

Green building design reduces:

- Heat loss & heat gain
- Urban heat island effect
- Stormwater runoff temperatures
- Overall energy consumption

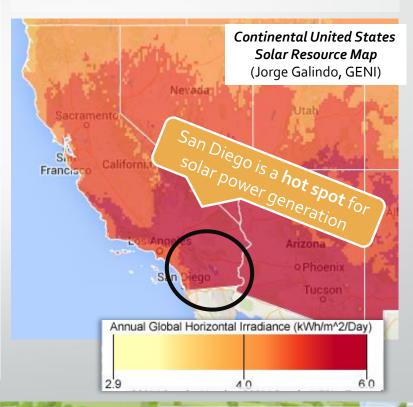
San Diego is home to the world's 1st Platinum LEED certified airport terminal

- Natural & energy efficient lighting
- Reflective roof
- Lighting/HVAC control technology

BUILDING RESILIENT CITIES GE

Shining Cities Report (Environment American Research & Policy Center)

Table ES-1. Top 20 Solar Cities by Total Installed Solar PV Capacity, End of 2013*


Principal City	State	Cumulative Solar PV Capacity (MW)	Cumulative Solar PV Capacity Rank
Los Angeles	CA	132	1
San Diego	CA	107	2
Phoenix	AZ	96	3
San Jose	CA	94	4
Honolulu	HI	91	5

San Diego is capable of expanding its solar power production because of its high annual global horizontal irradiance (GHI).

Solar Energy Systems in San Diego

- **University of San Diego** holds the largest solar power system on a private campus
- **Park View Terrace** is 1 of 7 solar-powered affordable housing projects in California by Community HousingWorks

Renewable Energy San Diego's Solar Power Potential

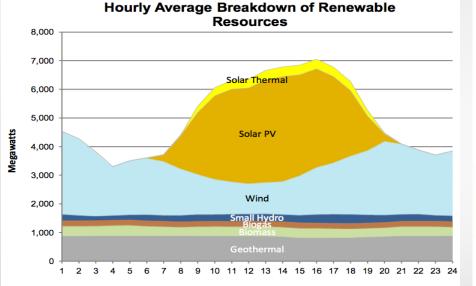
Building Resilient Cities

(New York Times)

NG KESILI

During Hurricane Sandy only systems with attached batteries or generators produced energy when electric grid was offline.

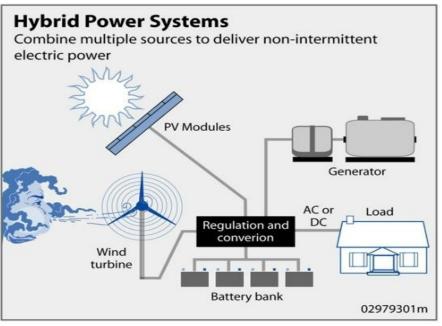
Solar Energy Systems


Advantages

- Reduces pollution
- Protects consumers
- Helps the economy
- Enhances resilience:
 - Reduces strain on grid
 & prevent blackouts
 - Backup energy source during outages

Disadvantages

- Some systems are not completely "off-grid"
- High cost of adding backup battery storage
- Battery backup is not suitable for areas vulnerable to flooding


Photovoltaic-Wind Hybrid Energy Systems

Time of Day This graph shows the production of various types of renewable generation across the day.

(July 9, 2014, California ISO)

Peak operating times for wind and solar systems occur at **different** times of the day and year.

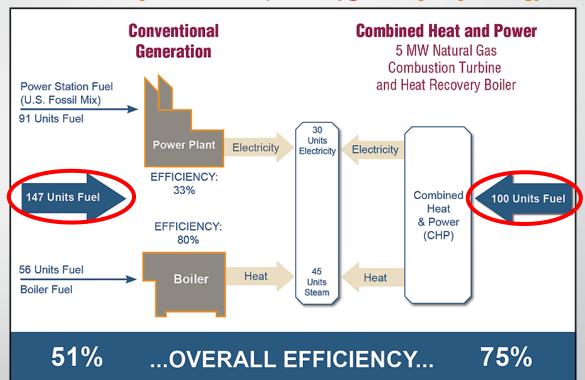
(US Dept. of Energy)

Hybrid systems make it possible to use these renewables **continually**. Batteries and generators provide energy when they are not available.

BUILDING RESILIENT CITIES GE

Cogeneration

Combined Heat & Power (CHP)

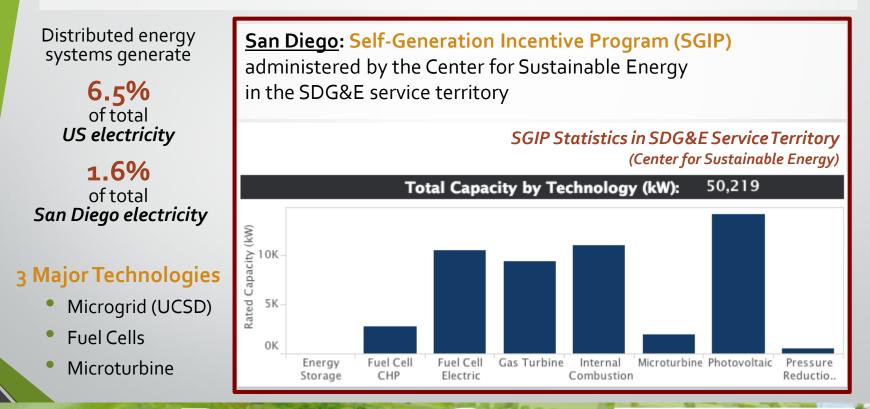

3 Public Utilities Department Buildings in San Diego Already Utilize CHP:

- Poin<mark>t L</mark>oma Wastewater Treatment Plant
- North City Water Reclamation Plant
- South Bay Water Reclamation Plant

Industrial Processes: Waste heat is collected and put back into a system or other parts of a process.

Residential Units: MicroCHP units provide electric power for appliances and supply heat for hot water and space heating.

DING RESILIENT



Units fuel needed to produce 75 units of useful energy...

Source: EPA

Distributed Energy

Shifting from large, centralized systems to small-scale, neighborhood based systems

BUILDING RESILIENT CITIES GE

Microgrids

Advantages

- Easy renewable integration
- Reduces peaking power demand
- Lowers GHG emissions
- Reduces amount of electricity lost
- Configurable with CHP systems

Disadvantages

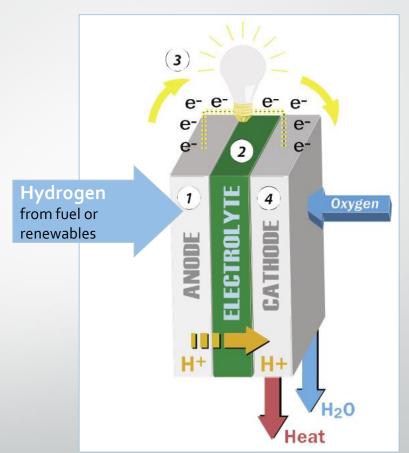
- Natural gas-fueled DG is not as efficient as natural gas-fired generation from the grid
- Efficiency improved only when CHP and renewables are included
- High cost of technologies

Building Resilient Cities

51

university's electricity.

Fuel Cells


Generates electricity and heat through an electrochemical process using oxygen and natural gas, waste biogas, or hydrogen from renewable sources.

Advantages

- Electrical efficiencies between 40 to 60% (higher than combustion-based systems)
- Less CO2 emissions
- Can be used to store excess energy from renewable sources

Disadvantages

- Most use natural gas and fuel
- High cost
- Susceptible to corrosion

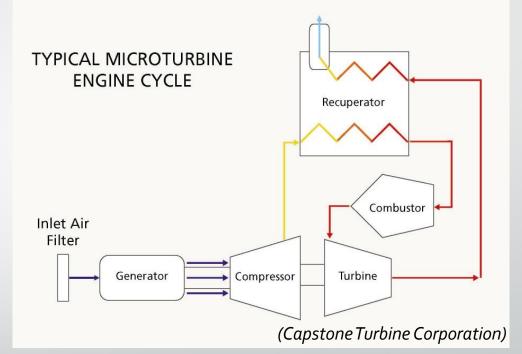
(Center for Climate & Energy Solutions)

BUILDING RESILIENT CITIES GENI GIODAI Energy Network Institut

Microturbines

Small turbines fueled by natural gas, hydrogen, propane, or diesel

Advantages


- Higher efficiency when integrated with cogeneration system
- Compact size
- Long maintenance intervals

Disadvantages

- Parasitic load loss
- Loss of output and efficiency at high temperature and elevation

NG RESI

Schematic of Microturbine System with Cogeneration Configuration

Recuperators capture waste heat from turbine to be reused to heat gases in the combustor produce energy.

Global Ener Network Ins San Diego's diverse resources allows us to integrate a broad range of resilient energy solutions. But they need the help of...

- Local governments
- Federal programs
- Partnerships with local utilities
- Financial Institutions
- Homeowners

Stay tuned to learn about energy in other sectors!

- Transportation July 17
- Agriculture & Food July 24
- Waste July 31

Los Vecinos, San Diego's 1st LEED-certified Platinum, 100% solar-powered affordable housing.

DING RESILIEN

Host & Sponsors


Hosted by: WORLD RESOURCES SINCENTER

Sponsored by:

BUILDING RESILIENT CITIES GE

Partners

56

Further Information

Contact Information

- Cameron Bernhardt: cbernhardt15@cmc.edu
- Amy Syvrud: ajs8at@virginia.edu
- Byron To: byronktoby@gmail.com
- Aly Zamora: zamoraa@sandiego.edu

BUILDING RESILIENT CITIES G